المساعد الشخصي الرقمي

مشاهدة النسخة كاملة : طلببببببببببببببببببببببتكم يهل الهييييييييييييييييييير



الولايات المتحده البدويه
04-11-2007, 06:05 PM
مرحببااااااااااا الساااااااااااااااع


طلبتكم قووولوو تم

ابه حد يسااعدنيه عليه برووجكت وماعرفت انزله من النت ع الووورد بلييييييييييييييييييييز حد يعاونيه

ادري دوووم اقووولكم ساعدونيه بس ماليه غير هالمنتدى


الموظوووع عن
newton method
(animation)

بليييييييييييييييييز ردووو علييه اخر يووم ورى بااااجر

بالانجلييز السير يباااه

الشاعره!
04-11-2007, 06:26 PM
ماطلبتي ,,, بس يعني شبغيتي بالظبط؟؟

الولايات المتحده البدويه
04-11-2007, 07:59 PM
ابغي عن نيوتن ميثود يعني التعريف وكمن اجزامبل (مثال) بحدود ثلاث صفحااات جان تروومين

بالانقليزي

الشاعره!
04-11-2007, 09:57 PM
Description of the method
The idea of the method is as follows: one starts with an initial guess which is reasonably close to the true root, then the function is approximated by its tangent line (which can be computed using the tools of calculus), and one computes the x-intercept of this tangent line (which is easily done with elementary algebra). This x-intercept will typically be a better approximation to the function's root than the original guess, and the method can be iterated.


An illustration of one iteration of Newton's method (the function f is shown in blue and the tangent line is in red). We see that xn + 1 is a better approximation than xn for the root x of the function f.Suppose f : [a, b] → R is a differentiable function defined on the interval [a, b] with values in the real numbers R. The formula for converging on the root can be easily derived. Suppose we have some current approximation xn. Then we can derive the formula for a better approximation, xn+1 by referring to the diagram on the right. We know from the definition of the derivative at a given point that it is the slope of a tangent at that point.


Example
Consider the problem of finding the positive number x with cos(x) = x3. We can rephrase that as finding the zero of f(x) = cos(x) − x3. We have f '(x) = −sin(x) − 3x2. Since cos(x) ≤ 1 for all x and x3 > 1 for x>1, we know that our zero lies between 0 and 1. We try a starting value of x0 = 0.5.


The correct digits are underlined in the above example. In particular, x6 is correct to the number of decimal places given. We see that the number of correct digits after the decimal point increases from 2 (for x3) to 5 and 10, illustrating the quadratic convergence.

In general the convergence is quadratic: the error is essentially squared at each step (that is, the number of accurate digits doubles in each step). There are some caveats, however. First, Newton's method requires that the derivative be calculated directly. (If the derivative is approximated by the slope of a line through two points on the function, the secant method results; this can be more efficient depending on how one measures computational effort.) Second, if the initial value is too far from the true zero, Newton's method can fail to converge. Because of this, most practical implementations of Newton's method put an upper limit on the number of iterations and perhaps on the size of the iterates. Third, if the root being sought has multiplicity greater than one, the convergence rate is merely linear (errors reduced by a constant factor at each step) unless special steps are taken.

الشاعره!
04-11-2007, 09:58 PM
اختي انتي تقصدين قوانين نيوتين الثلاثه للحركه؟

الشاعره!
04-11-2007, 09:59 PM
وبالنسبه للامثله قصدج مثال عن النظريات؟؟ يعني مثلاً القانون الثالث الي اعتقد يتكلم عن
the mass moving in a constant velocity in a certinn path untill the force is off?

رَحِيْلُ الْودّ
04-11-2007, 10:05 PM
الغلا السموحة منج توني اشوف الموضوع ..

بحاول قد ما أقدر أدور لج عليه بس انتي اي منهج وبأي صف ..

تحياتي لج

الولايات المتحده البدويه
05-11-2007, 09:26 AM
انا ف الجاامعه

والسير طلبناا بروجكت عن نيوتن ميثود يعني تعريف او تاريخه وكمن مثال يحدود 4صفحاات

الولايات المتحده البدويه
05-11-2007, 10:45 PM
وييييييييييييينكم محد رد علييييييييييييييييييه